Thursday, November 3, 2011
Wednesday, September 21, 2011
Official Google Blog: More wood behind fewer arrows
Official Google Blog: More wood behind fewer arrows: Last week we explained that we’re prioritizing our product efforts. As part of that process, we’ve decided to wind down Google Labs. While ...
Tuesday, August 16, 2011
दो राह,समय के रथ का घर्घर-नाद सुनो
सदियों की ठंढी-बुझी राख सुगबुगा उठी,
मिट्टी सोने का ताज पहन इठलाती है;
दो राह,समय के रथ का घर्घर-नाद सुनो,
सिंहासन खाली करो कि जनता आती है।
जनता?हां,मिट्टी की अबोध मूरतें वही,
जाडे-पाले की कसक सदा सहनेवाली,
जब अंग-अंग में लगे सांप हो चुस रहे
तब भी न कभी मुंह खोल दर्द कहनेवाली।
जनता?हां,लंबी – बडी जीभ की वही कसम,
“जनता,सचमुच ही, बडी वेदना सहती है।”
“सो ठीक,मगर,आखिर,इस पर जनमत क्या है?”
‘है प्रश्न गूढ़ जनता इस पर क्या कहती है?”
मानो,जनता ही फूल जिसे अहसास नहीं,
जब चाहो तभी उतार सजा लो दोनों में;
अथवा कोई दूधमुंही जिसे बहलाने के
जन्तर-मन्तर सीमित हों चार खिलौनों में।
लेकिन होता भूडोल, बवंडर उठते हैं,
जनता जब कोपाकुल हो भृकुटि चढाती है;
दो राह, समय के रथ का घर्घर-नाद सुनो,
सिंहासन खाली करो कि जनता आती है।
हुंकारों से महलों की नींव उखड़ जाती,
सांसों के बल से ताज हवा में उड़ता है,
जनता की रोके राह,समय में ताव कहां?
वह जिधर चाहती,काल उधर ही मुड़ता है।
अब्दों,शताब्दियों,सहस्त्राब्द का अंधकार
बीता;गवाक्ष अंबर के दहके जाते हैं;
यह और नहीं कोई,जनता के स्वप्न अजय
चीरते तिमिर का वक्ष उमड़ते जाते हैं।
सब से विराट जनतंत्र जगत का आ पहुंचा,
तैंतीस कोटि-हित सिंहासन तय करो
अभिषेक आज राजा का नहीं,प्रजा का है,
तैंतीस कोटि जनता के सिर पर मुकुट धरो।
आरती लिये तू किसे ढूंढता है मूरख,
मन्दिरों, राजप्रासादों में, तहखानों में?
देवता कहीं सड़कों पर गिट्टी तोड़ रहे,
देवता मिलेंगे खेतों में, खलिहानों में।
फावड़े और हल राजदण्ड बनने को हैं,
धूसरता सोने से श्रृंगार सजाती है;
दो राह,समय के रथ का घर्घर-नाद सुनो,
सिंहासन खाली करो कि जनता आती है।
- रामधारी सिंह दिनकर
मिट्टी सोने का ताज पहन इठलाती है;
दो राह,समय के रथ का घर्घर-नाद सुनो,
सिंहासन खाली करो कि जनता आती है।
जनता?हां,मिट्टी की अबोध मूरतें वही,
जाडे-पाले की कसक सदा सहनेवाली,
जब अंग-अंग में लगे सांप हो चुस रहे
तब भी न कभी मुंह खोल दर्द कहनेवाली।
जनता?हां,लंबी – बडी जीभ की वही कसम,
“जनता,सचमुच ही, बडी वेदना सहती है।”
“सो ठीक,मगर,आखिर,इस पर जनमत क्या है?”
‘है प्रश्न गूढ़ जनता इस पर क्या कहती है?”
मानो,जनता ही फूल जिसे अहसास नहीं,
जब चाहो तभी उतार सजा लो दोनों में;
अथवा कोई दूधमुंही जिसे बहलाने के
जन्तर-मन्तर सीमित हों चार खिलौनों में।
लेकिन होता भूडोल, बवंडर उठते हैं,
जनता जब कोपाकुल हो भृकुटि चढाती है;
दो राह, समय के रथ का घर्घर-नाद सुनो,
सिंहासन खाली करो कि जनता आती है।
हुंकारों से महलों की नींव उखड़ जाती,
सांसों के बल से ताज हवा में उड़ता है,
जनता की रोके राह,समय में ताव कहां?
वह जिधर चाहती,काल उधर ही मुड़ता है।
अब्दों,शताब्दियों,सहस्त्राब्द का अंधकार
बीता;गवाक्ष अंबर के दहके जाते हैं;
यह और नहीं कोई,जनता के स्वप्न अजय
चीरते तिमिर का वक्ष उमड़ते जाते हैं।
सब से विराट जनतंत्र जगत का आ पहुंचा,
तैंतीस कोटि-हित सिंहासन तय करो
अभिषेक आज राजा का नहीं,प्रजा का है,
तैंतीस कोटि जनता के सिर पर मुकुट धरो।
आरती लिये तू किसे ढूंढता है मूरख,
मन्दिरों, राजप्रासादों में, तहखानों में?
देवता कहीं सड़कों पर गिट्टी तोड़ रहे,
देवता मिलेंगे खेतों में, खलिहानों में।
फावड़े और हल राजदण्ड बनने को हैं,
धूसरता सोने से श्रृंगार सजाती है;
दो राह,समय के रथ का घर्घर-नाद सुनो,
सिंहासन खाली करो कि जनता आती है।
- रामधारी सिंह दिनकर
Friday, May 27, 2011
कुछ यादें - डायरी के फटे पुराने पन्नों से.
ये कविता मैंने अपने ग्रेजुअसन के दिनों मैं लिखा था.. हिंदी मैं वर्तनी सम्बन्धी दिक्कत मुझे बचपन से ही थी.. लेकिन फिर भी हिन्दी से जबरदस्त लगाव था! अब इस बात का डर नहीं है.. बहुत software हैं phonetic typing के लिए . ये मैंने २००१ मैं लिखा था.. डायरी मैं तिथि लिखने की आदत न होने की वजह से महीना और दिन बता पाना संभव नहीं है..
जब मैंने उसे देखा
सूरज की पहली किरण सी,
या फिर,
ढलती शाम सी,
नहीं! ऐसी भी नहीं थी वो-
सवेरा या शाम लगे जो,
क्यूंकि, सवेरा या शाम मुझे,
इतनी अच्छी कभी नहीं लगी,
इतनी उम्मंगे कभी नहीं सुलगी|
या थी वो, मेरी भावनाओं का प्रतिरूप?
या मेरी आकांक्षाओं का ही स्वरुप?
हे कृष्ण! क्या यही है प्रेम-अगन-
अगर यही तो, क्यों नहीं जल रहा मेरा मन?
अगर यही तो, क्यों नहीं तरपता मेरा मन?
अगर नहीं तो, फिर ये आकर्षण क्या है?
अगर नहीं तो, फिर ये प्रलोभन क्या है?
जब मैंने उसे देखा
दूसरी बार,
उसकी आँखे,
मुझे बुला रही थी,
और मुझे तरपा रही थी,
या, शायद -
कुछ और भी बता रही थी,
फिर देखा मैंने उसमें अपनी ही-
भावनाओं का समावेस|
या फिर उसमें खुद को ही-
देखा था निरुद्धेश्य ||
जब मैंने उसे देखा
अंतिम बार,
उसकी आँखे,
निरुद्धश्य देख रही थी,
अनिक्षाओं से भरी मुस्कराहट,
व्यंग बाण फ़ेंक रही थी,
या शायद-
ये वो नहीं थी, जिसे मैंने चाहा था,
वो तो मुझी मैं खो गई, जिसे मैंने सराहा था|
आज मैं उसकी आँखों मैं सरलता,
नहीं देख रहा था |
जिसे मैंने चाहा था उसमें, निश्छलता,
नहीं देख रहा था ||
जब मैंने उसे देखा
सूरज की पहली किरण सी,
या फिर,
ढलती शाम सी,
नहीं! ऐसी भी नहीं थी वो-
सवेरा या शाम लगे जो,
क्यूंकि, सवेरा या शाम मुझे,
इतनी अच्छी कभी नहीं लगी,
इतनी उम्मंगे कभी नहीं सुलगी|
या थी वो, मेरी भावनाओं का प्रतिरूप?
या मेरी आकांक्षाओं का ही स्वरुप?
हे कृष्ण! क्या यही है प्रेम-अगन-
अगर यही तो, क्यों नहीं जल रहा मेरा मन?
अगर यही तो, क्यों नहीं तरपता मेरा मन?
अगर नहीं तो, फिर ये आकर्षण क्या है?
अगर नहीं तो, फिर ये प्रलोभन क्या है?
जब मैंने उसे देखा
दूसरी बार,
उसकी आँखे,
मुझे बुला रही थी,
और मुझे तरपा रही थी,
या, शायद -
कुछ और भी बता रही थी,
फिर देखा मैंने उसमें अपनी ही-
भावनाओं का समावेस|
या फिर उसमें खुद को ही-
देखा था निरुद्धेश्य ||
हे कृष्ण! क्या यही है प्रेम-अगन-
अगर यही तो, क्यों नहीं भर रहा मेरा मन?
अगर यही तो, क्या नहीं है ये एक व्योम सुमन?
अगर नहीं तो, फिर यह उज्जवलता क्या है?
अगन नहीं तो, फिर ये प्रज्जव्लता क्या है?
जब मैंने उसे देखा
अंतिम बार,
उसकी आँखे,
निरुद्धश्य देख रही थी,
अनिक्षाओं से भरी मुस्कराहट,
व्यंग बाण फ़ेंक रही थी,
या शायद-
ये वो नहीं थी, जिसे मैंने चाहा था,
वो तो मुझी मैं खो गई, जिसे मैंने सराहा था|
आज मैं उसकी आँखों मैं सरलता,
नहीं देख रहा था |
जिसे मैंने चाहा था उसमें, निश्छलता,
नहीं देख रहा था ||
हे कृष्ण! क्या यही है प्रेम-अगन-
अगर यही तो, क्यों नहीं नाम इसका द्वेश-जलन?
अगर यही तो, क्या नहीं था रोया तेरा मन?
ये प्रेम-अगन इसलिए की, जलाता है यह मन!
अगर नहीं तो, फिर वह अपनापन क्या था?
अगन वही तो, फिर यह द्वेश-जलन क्या है?
*********************************
- Ravi S. Singh
- Ravi S. Singh
आपके बहुमूल्य आलोचना की आशा करता हूँ.. अनर्गल टिप्पणी मिटा दी जायेगी
Virtual world steps onto zero ground : The Rising Bihar
Social Networking Site – Good or Bad?
Gone are the days when Internet was only limited to personal chit-chat and sending e-mails or youth just busy exchanging greeting cards and flierting.. we have witnessed so many changes in the trends of using internet and the there was a time when people believed that internet will increase nudaty and other social evils.
Internet for good and for bad? selection is yours. Some youth has proved it that how this medium can bring enthusiastic youth together for revolution, for development and for prosperity. The Rising Bihar famously known as TRB is a group on one of the top social networking site Facebook having more then ten thousand member now determined to solve social issue like education, poverty, dowry, child labor on ground level defeating the prejudice ‘what can be done on internet!’, by setting a example of what is impossible when responsible, enthusiastic youth decides to happen.
“We lives outside bihar but that alone can’t stop me doing some good for bihar.” Reads a comment posted by a member in TRB this shows the commitment and positives of youth of new and emerging bihar.
The home page of TRB (http://www.therisingbihar.com/) gives a brief but strong motive of the group.
"TRB is an awakening tale of those young enthusiastic Bihari people, who met each other on internet, at social networking sites like Orkut and facebook. Most of us are living outside our homeland Bihar for our livelihood and career. This was probably the major reason TRB took shape as all of us have had a desire to contribute in the progress of our home state with whatever we can, and from wherever we are! We had started with discussion on orkut on many Bihar related issues. It was the time when we would spend most of our time debating with each other on a social networking site orkut.. After TRB as founded, it was not only a place for chit-chat and argument but we had a vision this time. The vision of our own contributing hands to our developing state. Later, we started this group on facebook as well. In short, one can say that it’s not just a group but a revolution in itself! You all our visitors are more than welcome to join us through out our campaign and spread the message of love & prosperity.”
Gone are the days when Internet was only limited to personal chit-chat and sending e-mails or youth just busy exchanging greeting cards and flierting.. we have witnessed so many changes in the trends of using internet and the there was a time when people believed that internet will increase nudaty and other social evils.
Internet for good and for bad? selection is yours. Some youth has proved it that how this medium can bring enthusiastic youth together for revolution, for development and for prosperity. The Rising Bihar famously known as TRB is a group on one of the top social networking site Facebook having more then ten thousand member now determined to solve social issue like education, poverty, dowry, child labor on ground level defeating the prejudice ‘what can be done on internet!’, by setting a example of what is impossible when responsible, enthusiastic youth decides to happen.
“We lives outside bihar but that alone can’t stop me doing some good for bihar.” Reads a comment posted by a member in TRB this shows the commitment and positives of youth of new and emerging bihar.
The home page of TRB (http://www.therisingbihar.com/) gives a brief but strong motive of the group.
"TRB is an awakening tale of those young enthusiastic Bihari people, who met each other on internet, at social networking sites like Orkut and facebook. Most of us are living outside our homeland Bihar for our livelihood and career. This was probably the major reason TRB took shape as all of us have had a desire to contribute in the progress of our home state with whatever we can, and from wherever we are! We had started with discussion on orkut on many Bihar related issues. It was the time when we would spend most of our time debating with each other on a social networking site orkut.. After TRB as founded, it was not only a place for chit-chat and argument but we had a vision this time. The vision of our own contributing hands to our developing state. Later, we started this group on facebook as well. In short, one can say that it’s not just a group but a revolution in itself! You all our visitors are more than welcome to join us through out our campaign and spread the message of love & prosperity.”
Wednesday, January 26, 2011
Saturday, January 15, 2011
Algorithmic Efficiency -- Beating a Dead Horse Faster
In computer science, often the question is not how to solve a problem, but how to solve a problem well. For instance, take the problem of sorting. Many sorting algorithms are well-known; the problem is not to find a way to sort words, but to find a way to efficiently sort words. This article is about understanding how to compare the relative efficiency of algorithms and why it's important to do so.
If it's possible to solve a problem by using a brute force technique, such as trying out all possible combinations of solutions (for instance, sorting a group of words by trying all possible orderings until you find one that is in order), then why is it necessary to find a better approach? The simplest answer is, if you had a fast enough computer, maybe it wouldn't be. But as it stands, we do not have access to computers fast enough. For instance, if you were to try out all possible orderings of 100 words, that would require 100! (100 factorial) orders of words. That's a number with a 158 digits; were you to compute 1,000,000,000 possibilities were second, you would still be left with the need for over 1x10^149 seconds, which is longer than the expected life of the universe. Clearly, having a more efficient algorithm to sort words would be handy; and, of course, there are many that can sort 100 words within the life of the universe.
Before going further, it's important to understand some of the terminology used for measuring algorithmic efficiency. Usually, the efficiency of an algorithm is expressed as how long it runs in relation to its input. For instance, in the above example, we showed how long it would take our naive sorting algorithm to sort a certain number of words. Usually we refer to the length of input as n; so, for the above example, the efficiency is roughly n!. You might have noticed that it's possible to come up with the correct order early on in the attempt -- for instance, if the words are already partially ordered, it's unlikely that the algorithm would have to try all n! combinations. Often we refer to the average efficiency, which would be in this case n!/2. But because the division by two is nearly insignificant as n grows larger (half of 2 billion is, for instance, still a very large number), we usually ignore constant terms (unless the constant term is zero).
Now that we can describe any algorithm's efficiency in terms of its input length (assuming we know how to compute the efficiency), we can compare algorithms based on their "order". Here, "order" refers to the mathematical method used to compare the efficiency -- for instance, n^2 is "order of n squared," and n! is "order of n factorial." It should be obvious that an order of n^2 algorithm is much less efficient than an algorithm of order n. But not all orders are polynomial -- we've already seen n!, and some are order of log n, or order 2^n.
Often times, order is abbreviated with a capital O: for instance, O(n^2). This notation, known as big-O notation, is a typical way of describing algorithmic efficiency; note that big-O notation typically does not call for inclusion of constants. Also, if you are determining the order of an algorithm and the order turns out to be the sum of several terms, you will typically express the efficiency as only the term with the highest order. For instance, if you have an algorithm with efficiency n^2 + n, then it is an algorithm of order O(n^2).
If it's possible to solve a problem by using a brute force technique, such as trying out all possible combinations of solutions (for instance, sorting a group of words by trying all possible orderings until you find one that is in order), then why is it necessary to find a better approach? The simplest answer is, if you had a fast enough computer, maybe it wouldn't be. But as it stands, we do not have access to computers fast enough. For instance, if you were to try out all possible orderings of 100 words, that would require 100! (100 factorial) orders of words. That's a number with a 158 digits; were you to compute 1,000,000,000 possibilities were second, you would still be left with the need for over 1x10^149 seconds, which is longer than the expected life of the universe. Clearly, having a more efficient algorithm to sort words would be handy; and, of course, there are many that can sort 100 words within the life of the universe.
Before going further, it's important to understand some of the terminology used for measuring algorithmic efficiency. Usually, the efficiency of an algorithm is expressed as how long it runs in relation to its input. For instance, in the above example, we showed how long it would take our naive sorting algorithm to sort a certain number of words. Usually we refer to the length of input as n; so, for the above example, the efficiency is roughly n!. You might have noticed that it's possible to come up with the correct order early on in the attempt -- for instance, if the words are already partially ordered, it's unlikely that the algorithm would have to try all n! combinations. Often we refer to the average efficiency, which would be in this case n!/2. But because the division by two is nearly insignificant as n grows larger (half of 2 billion is, for instance, still a very large number), we usually ignore constant terms (unless the constant term is zero).
Now that we can describe any algorithm's efficiency in terms of its input length (assuming we know how to compute the efficiency), we can compare algorithms based on their "order". Here, "order" refers to the mathematical method used to compare the efficiency -- for instance, n^2 is "order of n squared," and n! is "order of n factorial." It should be obvious that an order of n^2 algorithm is much less efficient than an algorithm of order n. But not all orders are polynomial -- we've already seen n!, and some are order of log n, or order 2^n.
Often times, order is abbreviated with a capital O: for instance, O(n^2). This notation, known as big-O notation, is a typical way of describing algorithmic efficiency; note that big-O notation typically does not call for inclusion of constants. Also, if you are determining the order of an algorithm and the order turns out to be the sum of several terms, you will typically express the efficiency as only the term with the highest order. For instance, if you have an algorithm with efficiency n^2 + n, then it is an algorithm of order O(n^2).
Makar Sankranti
Makar Sankranti, the festival of harvest in India, is celebrated from 14 January 2011 to 16 / 17 January. Hindupad wishes you all a Happy Makar Sankranti. Today (14 January 2011) is Bhogi.. the day of bonfire (bhogi mantalu). In Andhra Pradesh, Karnataka, and Maharashtra, Bhogi is celebrated with utmost pomp. It is said on this day Lord Sri Ranganatha married Goddess Goda Devi. (Note: on 15 January 2011 (Sankranti), wearing red sarees or dresses is auspicious and the special food item (naivedyam) to offer to Sun God is – Kheer (Payasam).
Apart from Bhogi mantalu, Bhogi Pallu is another famous ritual on Bhogi (In some places, it is also observed on Sankranthi). ‘Bhogi pallu’ means the gooseberry fruits along with some food items, rice, other grains, coins, are kept on heads of children and they are offered to their maids as Drishti perantam. It is believed that doing such can make the children healthier, happier, and live longer. Makarajyothi festival is held during Makara Sankramana in Sabarimala Ayyappa temple. (14 January 2011 at 6.30 pm).
On Sankranti (15 January 2011) day, Sun enters into Makara Rashi. It marks the beginning of Uttarayana punyakalam. Performing punya snana (holy dip) in holy rivers such as Ganga, Yamuna, Godavari, Cauvery, etc., is highly auspicious. Lord Surya is offered special puja and special naivedyam on this day. Gangasagar Mela is held during Sankranthi.
Kanuma (16 January 2011) is the third and concluding day of Makar Sankranti festival (In fact the fourth day of Sankranti is celebrated as Mukkanuma… but it is not much popular). On Kanuma day, cattle (ox, cows, buffalos, etc.) are decorated and worshipped. In some places, Lord Shiva and Goddess Parvati; Lord Narayana and Goddess Lakshmi are worshipped on Kanuma.
Apart from Bhogi mantalu, Bhogi Pallu is another famous ritual on Bhogi (In some places, it is also observed on Sankranthi). ‘Bhogi pallu’ means the gooseberry fruits along with some food items, rice, other grains, coins, are kept on heads of children and they are offered to their maids as Drishti perantam. It is believed that doing such can make the children healthier, happier, and live longer. Makarajyothi festival is held during Makara Sankramana in Sabarimala Ayyappa temple. (14 January 2011 at 6.30 pm).
On Sankranti (15 January 2011) day, Sun enters into Makara Rashi. It marks the beginning of Uttarayana punyakalam. Performing punya snana (holy dip) in holy rivers such as Ganga, Yamuna, Godavari, Cauvery, etc., is highly auspicious. Lord Surya is offered special puja and special naivedyam on this day. Gangasagar Mela is held during Sankranthi.
Kanuma (16 January 2011) is the third and concluding day of Makar Sankranti festival (In fact the fourth day of Sankranti is celebrated as Mukkanuma… but it is not much popular). On Kanuma day, cattle (ox, cows, buffalos, etc.) are decorated and worshipped. In some places, Lord Shiva and Goddess Parvati; Lord Narayana and Goddess Lakshmi are worshipped on Kanuma.
Monday, January 10, 2011
Subscribe to:
Posts (Atom)